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a •Random parameter

i p(e/xla, , ... ) Conditional density of a given random parameters
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I. INTRODUCTION

Radar analysis and system design are usually performed under the assump-

tions that radar clutter is stationary and homogeneous; i.e., the probability

density and moments (statistics) of the clutter power are assumed to be con-

stant in time for a single resolution cell (stationary) and constant in space

from resolution cell to resolution cell (homogeneous). In practice there are

many situations which do not satisfy these conditions. For example, a single

clutter cell composed of a single type of vegetation which is moving in the

wind will have a first order density function and moments which vary with

time and wind velocity. A radar viewing the ocean with sufficient resolution

to resolve a single wave will record time varying density functions and mean

values for a single resolution cell, depending on whether a wave is in the

cell or not. A single cell composed of several different features (grass,

trees, water, etc.) will have different statistics than a cell composed en-

tirely of a single feature. Even when a resolution cell is composed of a

single feature such as grass or trees, the variation in moisture content,

number of scatterers per unit area, etc. result in an uncertainty in the den-

sity function and statistics. The feature or mixture of features in a resolu-

tion cell may also vary from cell to cell affecting histograms and moments of

data gathered from a number of range and/or azimuth cells.

The examples delineated above indicate the need for a mathematical model

to characterize the nonstationary and nonhomogeneity of radar clutter. Im-

plied in the examples are practical radar problems such as cell averaging

CFAR design and performance evaluation, accurate prediction of first order

density functions of clutter power with attendant calculation of false alarm



and detection orobabilities, pradiction of spacial histograms, etc. In. order

:3 :e useful, the model should have a firm heoretical basis, be relatively

s~mple, and be relatable to experimental data.

V2



II. \;-?ROACH

The proposed technique for characterizing nonstationary and/or nonhomo-

geneous clutter is to treat the first order probability density as a function

of random parameters. Thus if 2 is the instantaneous value of clutter power

and cV y 2' "'" an are parameters, then the conditional density function of 9

i :PI(/all C 2' ... a n ). If the parameters are treated as random variables,

then the density function for 9 may be written as the N fold integral:

P(3t)" Pd a (alt a a n dl2 d (1)

p1(~/n P2 ~ 2~ ~29 n 1 2-

where p2 (alp, a2 ... (n) is the joint probability density of the random pa-

rameters.

Once the general formulation as expressed by EquatioD (1) has been as-

sumed, the functional forms for P and P2 along with the type and number of

parameters (al, a2, "a" c,) must be determined. Several possibilities for p1

exist; however, the best choice appears to be the Nagakami density function,

which was developed to model the fading statistics for high frequency propa-

gation.

A. Choice of Conditional Density

It is shown in [1] that that Nagakami density is an approximate, general

solution for the probability density function of the quantity:

r = I a. e (2)
i

where ai and are random variables. Note that Equation (2) can be viewed

iJ 3



4

as the instantaneous envelope of clutter which is modeled as :he sum of re-

turns from indiviaiai discrete scatterers having amplitudes ai and phases U,.

Of course, the instantaneous clutter power z is just

2
a r

The functional forms of the Nagakami density functions for p(r) and p(z)

are:

2(k) k r 2k- -kr 2

p(r;k,u) - U r 0 (3)

4 k k-I -ka

S(k) a (a)

Se-k_p•(e;k,ua) = ________0 (4)

t'(k) (u) k

where u is the mean or average value of a r 2  k is the inverse of the nor-

malized variance of a,

k [mean (a)1]
Var W)

and r denotes the gama function

r (h) t e- dt k> 0

It is seen that Equation (4) has the general form of a gammd density function

where the parameter k is a positive number greater than zero. For the Naka-

Sami density functions, k is restricted to the interval Ic> •. In either

4



case Equations (3) and (4) can be viewed as families of curves with different

functional forms depending on the parameter k. For k 1 1, Equations (3) and

(4) become Rayleigh and exponential densities, respectively. For k = 2'

Equation (3) becomes a single sided Gaussian density.

As derived in (1), Equation (4) corresponds to the Ricean density func-

t.•ton

202

for co k 1 1. In Equation (6) 02 is the variance of the random quadrature

1 2Gaussian components, A is the steady power component and I is the modified
4 0

Bessel function of the first kind of order zero. For 1 k Equation
2

(4) corresponds to the Q density function.

2 02p p(a) e (._7_)

where

2CL 2o(U + P)

8= 202(1- )

2
0 is the variance of the quadrature Gaussian components and p is the corre-

latiou coefficient between the quadrature components.

It is seen from the above discussion that the Gamma density function for

the instantaneous clutter power as given by Equation (4) is justified from

theoretical considerations and includes the exponential and Ricean density

K 13



;unctions which are frequently observed in experimental clutter data. The

Gamma or Nakagami density function also simplifies the analysis because it is

a -unc6ion of only two parameters, the mean (u) and the inverse of the nor-

malized variance (k). Treating the two parameters as random variables, the

expression for the instantaneous power becomes

p(a) p/(a/u k) p2 (u k) du dk (8)

kak k-i1
p(. ft/ (k) £ e

a(k) (u) ek P(u, k) du dk (9)

where p2 (u,k) is the Joint probability density of u and k and the integrals

are taken over the full ranges of allowable values of u and k.

B. Examoles

The model for the first order density function as expressed by Equation

(9) is directly applicable to the short and long time variation in the scat-

tering from a given cell. For example, suppose that it is desired to model

the terrain scattered return over an interval of wind velocities. It has

been observed that for certain vegetation the functional forms of p,( iC/ 1 ,9C2 )

and the mean of a vary with the wind velocity. Thus if the Nakagami density

is'a good representation of p1(*/cl, a2), then knowledge of k and u as a

function of wind velocity would determine pl(a/u,k) in Equation (9); the fre-

quency of occurrence of the various wind velocities would determine P2 (u,k).

Another single cell terrain example is the variation of the average power

level of returns from vegetation depending on its moisture content, density,

height, etc. In this case pl(e) is generally exponential (k - 1) and does

6



not change its functional form. Thus only the various values of the mean (u)

and their frequency of occurrence for various conditions would be required to

determine p(e) from Equation (9).

Similar examples of clutter variation on a single cell basis occur for

backscatter from the ocean surface. A low resolution radar will generally

observe a first order density function that is exponential but has a time

varying mean depending on sea state, wave height, wind velocity and direction,

etc. This case would be treated in the same manner as the previously dis-

cussed case. High resolution radars recording returns from a single cell of

the sea have observed "spiky" returns, which are attributed to the backscat-

ter from individual waves, interleaved with returns which have an exponential

f first order density. In this case the overall density for p(a) could be ap-

proximated by the discrete version of Equation (8):

p(s) - (1 - P) pl(a/kl,ul) + P p 2 (s/k 2 ,u 2 ) (10)

where P is the probability that a wave is in the cell, pl(e/k1,U1  is the

probability density of the clutter power when no wave is in the cell, and4p2 (e/k 2,u 2 ) is the probability density of the clutter power when a wave is in

the cell.

The same techniques can be applied to histograms obtained from samples

taken from different range and/or azimuth cells. Assume that samples from N

independent cells are obtained and that the density associated with the nth

cell is p(a/u n,k ). The overall histogram can then be written as

n N n'n

7



vaen all cells having the same values of u and k are ccmbined, Equation (11)

becomes

p(a) = P 4 ?(u.,k.) p(l/u.,kd) (2.)

ihere P(ui,k ) is the fractional number of cells with parameters u4 and k..

Ln the limit as the values of u and k become continuous, the sum indicated in

Equation (12) approaches the double integral in Equation (8).

C. Investiaations

The application of the suggested theory and techniques should follow two

approaches: analytical and experimental. In the analytical area p( ) should

be obtained through Equation (9) for representative analytically tractable

forms of p2 (u,k). Experimental data should be scrutinized to determine the

validity of the Nakagami density to approximate the conditional density

Pi~mSl •2' ) and to obtain p2 (cL, 2 "'" an) for various cases of inter-

est.

>8



III. INITIAL RESULTS

A. Analysis

In order to obtain some meaningful results during the initial phase of

the program, it was decided to investigate the effects on the first order

density, p(a), caused only by variations in the mean. Hence the parameter k

was assumed to be constant in Equation (9). The first order density can then

be written as

ke"0 k- 1 u

p() P2 (u) du (13)fo F(k) (u)k 2

where P2 (u) is the probability density of the mean or average value. From

Equation (13) p(a) was determined for various representative functions, p2 (u).

Selected plots were made to show the general effects of P2 (U) on p(s). The

P2 (u) densities which were investigated included the Gamma, uniform, log uni-

form, and log normal.

1. Uniform

A frequently used analytical density function is the uniform densi-

ty

P 2 (u) u U "2 - u

(14)

P2 (u) = 0 u < ul,u > 2

9



hnen Equation (14) is substituted into Equation (13),

U., % , - I , I

((a, e ek du (5)Iu U 7 (k) (u)

ke
Through the change in variable t - , Equation (15) becomes

U 2k tk-2 -tdt()•P(a) "(u2-u) r~k) t(6

u2

The Incomplete Gamna function, which is tabulated in several sources, is de-

fined as

y(ax) - f a- e-t dt (17)
f0

for a > 0. Thus Equation (16) can be written as

[(O) Y(k-•1, - (k)- 1, (18)

for k > 1. For the special case of k 1 1, Equation (16) becomes

_(S) dt (19)
u2 -u t

u2

10.I



In terms of the exponential integral:

E.,(x) J edt (20)
x

Equation (19) can be expressed as

P~e = U2a El (21)

for k 1.

In order to determine the effects on p(e) of the spread in the mean u,
u2

values of p(A) were calculated from Equation (21) for dynamic ranges 2_ a
uI a

of 1-.11, 2, and 10. These values are listed in Table 1 and plotted in Figure

1. For comparison purposes, it was decided to plot the quantity u ver-

sus normalized variable . Another, possibly more useful, plot would
U2

show u p(e) versus-! where is the mean of u and is related to uI and u2

through the relationships:

2u

2aZ
U --1 1+a

Figure 1 and the data in Table I indicate that for small spreads in theu r

mean (a large, - a small), p(a) approaches, the function e-V2 . As the
u2

spread in the mean u increases, the function of u 2p(a) becomes: more concen-

trated near the origin. These results are to be expected, because as a ap-

proaches 1.0, uI approaches u2 and p2 approaches a delta function centered

ft2



ZXonential - Uniform
2.3

0 a 0.1

0 a- 0.5

2.4
1 a 0.9

2.0

Up(s)

1.6

1.20
0

1.28
0

0.8 4

a'

S0.4

UB

i, C0 ,
, 8 I '

i 0.2 0.4 0.6 0.8 1.0 1.2 1.4

U2

Figure 1II-1. Normalized Probability Density Function of Clutter
Power for Exponential - Uniform.
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a=0.9 a=0.5 a=0.1 a÷ 0
U2 U2p () U2p (i) U2p (e) U2 P(e)

4 0 1.054 1.386 2.558
'.1 .948 1.201 1.782 1.823

.2 .853 1.041 1.304 1.223

.3 .768 .903 0.992 .905

.4 .690 .784 0.776 .702

.5 .622 .681 0.621 .560

.6 .560 .592 0,.504 .454

.7 .504 .515 0.415 .374

.8 .450 .449 0.345 .311

.9 .408 .391 0.289 .260

1.0 .367 .341 0.244 .219

1.1 .330 .297 .206 .186t1.2 .297 .260 .176 .158
1.3 .267 .227 .1505 .135

1.4 .241 .199 1.129 .116

1.5 .217 .174 0.111 .100

2.0 .128 .090 0.054 .0489

Table III-1. U2P(s) As Furnction of For Exponential
U2

pl(e/u) and L.Liform P2 (u)

13



at u u.,. The resulting expression for p(e) is then
a

p(•) . [ e '(u-u) du e_.-u

1 .As a approaches zero, u! approaches zero and Equation 19 becomes

_ f(z e- _ E(1 ) (22)p( -u2 --- t - u2 u
2 2 2

u2

The expression in Equation (22) approaches infinit7 at 0 and has theu2

largest negative slope for all values of a between zero and one.

2. Gaima

Since the Gana density encompasses a relatively wide family of

functions, it is instructive to investigate the behavior of p(e) when P2 (u)

is Gama distributed. In this case

2u
2

k2  k2 -1
S (k2 u e

P2 (u) ) (23)

r(k.) (U)

where • is the mean of u and k2 is the inverse of the normalized variance of

fu. Using Equation (13) the expression for p(z) becomes
k u~ 2 + k

k I- u(k) k (k 2) k- e e
(() ) ( 2) kk2+i du (24)

f (k) t(k 2) ( 2) fi

14



k~u
By the change of variable X --- the integral in Equation (24) can be writ-

U

ten as

k-

[ ce du -(k 2)k2 e ' dx (25)
k k-k2 + 1 k-k2 + 1

Using the identity

2
-(X + 4.) 2v+.

e dx V K (y)V+i
f) V

0 X

in Equation (25) and substituting the resultant into Equation (24), the ex-

pression. for p(e) becomes

k+k2  k+k2-2

2 22(kk2) (a) 4k a/k-

P(Q) k2 +2 2  1 k (V/2) (26)

r(k) r(k2 ) ( 2

For the special case of k- 1, pl(z/u) is exponential,

k 2 +l k 2 -1
2 2

(2)(k 2 ) (a) 2k

ký+l k( 2-l

r(k 2) (u)2

The density function given by Equation (27) is especially interesting because

it can be integrated in closed form to find the false alarm probability:

15



* f p~a)p~ a)(d3
fz* f

Substitucing Equacion (27) into Equation (28)

k2) 1 (s 212 2'4k

2(k2 2- 2 () •-- d)at (29)

2

V ((k 
2  -2

Let ti - then

If kw 1t 2 Yk21(t) dt (30)

r~k 2) (2)
0

Makins use of the identity

t KV- 1_ (t)dt2 r(' ) -x Kx) (31)

Equation (30) becomes

16



k22

P -))(32)

r (k 2 ) (u)
i

Thus for the special case of an exponential density for p,(e/u) and a Gamma

density with parameters u and k 2 for p,(u), the false alarm probability for a

given power threshold of e* is given by Equation (32).

Figure 2 is a plot of Equation (27) for values of k 2 equal to 1.5 and 3.

Table 2 lists the values used in the plot. The behavior is similar to that

shown in Figure 1. As k becomes large (k 2  3), the variance of u about its
22

mean 6 becomes small and p(z) approaches the exponential density. As k2 be-

comes smaller, larger spread of the variable u about its mean, u p(z) attains

a higher maximum at 0 and falls off more. rapidly as a function of for
iu

small values of the argument. These observations are verified by the limit-

ing forms of k . As k2 approaches infinity, p 2 () approaches 6(u- a) and p(z)
0 1

approaches e' . As k2 approaches the limiting value of in the Nakagami

density function,

p(eS- (33)

\2.u -a

17



3.2

W cponentlal. - Ganma

2.3 .kz + 1. 5

2 * Exponential Density (Reference)
2.4

•p(,I)

2.0

1.6

•L.

0.8 0

* 0
0.4 #: t

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure II-I. Normalized Probability Density Function of Cluttar Power

for Exponential - G-aza.

p

•18



A_ k2 1.5 k2 3.0
2 2 .

u up(z) up(z)

0 3 1.50
0.01 2.35 1.46

0.1 1.38 1.18
0.2 1.003 .962

2' 0.3 .784 .805

0.4 .637 .684
4 0.5 .531 .587

"0.6 .450 .509

0.7 .386 .444
0.8 .335 .389

0.9 .294 .343

1.0 .259 .304
1.5 .149 .175
2.0 .094 .107

Table 111-2. ýp(s) As Function of - For Exponential pl(s/u)

and Gamma P2 (u).

19



it is interesting to note that an independent analysis of histograms obtained

from range swept radar data (2] indicated that p(e) had the form

-b Vr-.
p(B) - ce (c )

which is the same form as Eqi.ation (33).

3. Log Uniform

Radar backscatter data is usually obtained in the form of K log a

instead of direct measurement of the quantity e. Thus it is useful to inves-

tigate density functions for P2 (u) which are distributed in terms of log u.

Consider the density function

9

1Y y Y2 > y YI (35)

-2 y2 -y

whera y 1 10 log10 u.. The density for u then has the form

P2(). • • u2 > u > uI (36_)
p(u) - 3 2 > U 1  (6u 2

u 1

where u2 - (10) and u1 - (10)0. The density function given by Equation

(36) is the log uniform density function.

When the log uniform density function for P2 (u) is substituted into

Equation (13)

20



ke

{p U9  (k)) e du (37)

1

For the case k =

_ _ (U 2  u
p(s) = 1 du (38)

in (a) fu1

1

Equation (38) can be readily integrated and it is found that

~9

u u
u 2  u 1

P()= e -e (39)

Equation (39) is plotted in Figure 3 from the computed values shown in

Table 3. The parameter a is defined in the same manner as that used for uni-

form density: u1 = au2 . It is seen that the behavior of p(z) for log uni-

form P2 (u) is similar to that for uniform and Gamma P2 (u). For small spreads

" of p2 (u), a 1.0, p(s) approaches the exponentiai density. Large spreads in

P2(u) 0 a , 0, causes u2P(e) to attain large peaks at 0 and to fall off

rapidly as - increases for small values of -u2 u2
2  2 2

21



S- .•xponential - Log Uniform

U1  aU 2

3.2
0 - a o.1

. •. a 0..5

2.8- + a- 0.9

J2 p(a)

2.4,

0

2.0

1.6

0

0 0
0.48 0

0 0

0

0
o

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0 2

' Figua 111-3. No%-a•ized Probab•ility Density Functi~n Of a•ut:ter PoW•"
Sfor Expountial, - Log Uniform.
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a 0.9 a=0.5 a=0.i
U7 U 2P (e) U 2P (e) U2P (q)

0 1.0515 1.44 3.91

.1 .949 1.24 2.33

.2 .854 1.07 1.48

.3 .768 .923 1.00

.4 .691 .797 .708

.5 .622 .689 .521
.6 .560 .595 .395.7 .504 .515 .308

1.8 .453 .446 .244
.9 .408 .387 .196

1.0 .367 .335 .160
1. 5 .217 .167 .0646
3.0 .045 .0228 .0072

Table 111-3. U2 P(u) As Function of - For Exponential pl(e/u)

and Log Uniform P2 (u).
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4. Log Normal

Another commonly used density is the log normal density, whereas

the name implies, the log of the variable is normally distributed. Thus for

10 log1 Ou,

2

2a 2

p(y) - e (40)

y

= where .•and a z are the mean and variance of y, respectively. The density

function for u is then

.(nu - I-n)2

2a
p2 (u) u > 0 (41)

wk Ire lan and are the mean and variance of lnu, respectively. From Equa-

rion (13) the density function for the clutter power becomes

(Ihu -In) 2
/oc° k •k-1 " -• a

p(t) = f,(k) a a e l du (42)

which reduces to
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!ii (lnu - nu)2u 2a

p(e) V du (43)

t for k 1 1. Thus far attempts to obtain closed form expressions for the in-

tegrals in Equations (42) and (43) have not been successful, although serie.3

representations for the two equations have been derived.

Nakagami (i] states without proof that the density function for T 10
Slogl0a, when u is log normal adpl(a/u) is a Gamma density is given byth

lo1 0 ,

expression

p T(T) F T, k, ) S(T, k, 0 ) (44)

where

F( k, ) 2(k 2k(T- k e 2(-
m r(k) exp m

2 2 2 2
S~ r~ k , t ) - e x p m ~0 2 2 m, 2 +4a 2kQm +4 a kQ 0

and

- 10 logiOU

- E(1O loglOu) u mean value of 10 loglou

25
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a Variance of 10 log1 u

a0q " -(--°

M '20 1Og a - 3.686
.• • -In 10Transforming to the variable z (10)10 a 10 it is found that

p(e) 1 t yl2)t1n.10 ' II
k 2 2 "

)2 -vaiac kf in ('km' -

z k

Uu

i Fr hespe.l.lcu ef - I,

a M (45)

t~~ 2( e --
i p( ) - ....V . (46

where

2
-variance of lau

u median value of u e en
m

la mean, value of nun

For the special case of kc 1,

2 .z

a exp 12( i a-

p(5) (46)

22

Equation (46) is platted in Figure 4 as a function of- for Oa 0.5 and 1.5.

The quantity plotted is p(e). The values used in the plots are given in
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Table 4. As the spread in u becomes small (a~ is small) Equation (45) ap-

proaches the function

ke

e u(k )

Since

2 2

u e e u eum

Sapproaches u.m as a2 becomes small and

ke

lim 
(Ik e U

a-• o p(1) - . ) (48)a r(k)

For k " 1,

im U
S- 0 e (49)

Thus as a - 0, p(z) is approximately equal to pl(e/u) evaluated at u U as

can be seen from Equation (13). TLhis result agrees with the plot for small
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4.0

Exponential - Log Normal

3.6 o a 1.3

a 2 0.5

0' Exponential Density (Reference)
3.2

0

2.8

2.4

;P(q)

0

2.0-

1.6

0

1.2

0,0
0.4 0 * 0

0 0 0

0

0 0* , 0 ¢

0.2 0.4 0.6 0.3 1.0 1.2 1.4

Figure III-4. Normalized Probability Density Function of Clutter Power
for Exponential - Log Normal.
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0.5 cy 1.5

u up ;p•(a)

0 1.65 4.48

.01 1.61 4.10

.1 1.31 2.13

.2 1.06 1.26

.3 .866 .845

.4 .718 .607

.5 .602 .457

.6 .510 .355

•.7 .435 .283

.8 .374 .229

.9 .323 .188

1.0 .281 .156

1.1 .246 .131

1.2 .215 .110

1.3 .190 .0934

1.4 .168 .0797

1.5 .149 .0682

2.0 .0853 .0329

3.0 .0319 .00876

4.0 .0133 .00254

5.0 .00583 .000773

10.0 .000141 2.63x10"6

Table 111-4. up(s) As Function of- For E-. .t, ential pl(a/u)
U

and Log Normal P2 (u).
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• (" 0.5). For larger spreads in u (c large), Equation (46) indicates

that at the point e - 0,

2

U -
P(0) a• e (30)

UU

Thus u p(z) at z 0 becomes large as a becomes large. This trend is veri-

fied by the plot for 02 - 1.5. It is seen '.that the general behavior of p(e)

for log normal u is similar to that for the other p2(u) densities discussed

earlier.
2

Nakagami [11 indicates that when P2 (u) is log normal and 7- is large,

p(e) approaches a log normal density when pl(z/u) is a Gamma density. For

k - - he states that p(.Y is log normal when CT > 10 which corresponds to20
a > 2.3; for k - i, p(e) is said to be log normal for a > 7.0 or a > 1.61.0

The log normal density has been proposed for terrain at low grazing angles

£3].

B. Data Evaluation

A limited amount of experimental data was visually inspected to obtain

the appropriate form of P2 (u). It appears that the variation in the average

value of the backscarter from trees at frequencies of 9.5 GHz, 16.5 GEz, 35

GHz, and 95 GHz may be approximated by either log uniform or truncated lot

normal densities. Extensive reduction of experimental data for the feature

types of interest at the desired frequencies, depression angles, time of

year, etc. would be required to properly determine the correct functional

form of P2 (u).
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IV. SUMMARY

The need for a statistical model to describe norstationary and nonhomo-

geneous radar clutter returns is discussed in Section I. Examples are given

which indicate that when the variability and uncertainty of clutter are

taken into account, nonstationaricy and nonhomogeneity of the returns are

the rules instead of the exceptions.

In Section II the general and specific approaches to the problem are

outlined. The general approach is to model the first order density function

of the instantaneous power of the clutter return as the expected value of a

conditional density which is a function of randcmt par'nttters. The expected

value is taken over the full ranges of all the random parameters. If n

parameters are involved, then the conditional density as a function of each

of the parameters must be known along with the joint density of the param-

eters. An n fold integral is then reouired to obtain the first order densi-

ty function of the instantaneous clutter power.

It is shown that the Nakagami or Gama. density is a good choice for the

conditional density function for several reasons. It has valid theoretical

and practical justifications and is a function of only two parameters: the

mean (u) and the inverse of the normalized variance (k). The Nakagami den-

sity includes the exponential and Ricean densities as special cases; its

particular functional form depends on the value of k.

The analysis in Section III considers the case where the conditional

density has the Nakagami form and only the mean u is a random vari.able; the

parameter k is assumed to be a constant. Although somewhat restrictive,

variation only in the mean does occur in practice and it also simplifies
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thah analysis. Four separate density functions for the mean are considered:

L niform, Gamma, log uniform, and log normal. General expressions are de-

rived aiid selected plots are made for the first order density of the clur:er

power (9) for each distribution of the mean.

Mhen the mean is uniformly distributed, p(e) can be expressed, see

Equation (18), as the difference between two incomplete Gamma functions for

k > 1. For k - 1, exponential density for p(*/u), p(e) is given by Equation

(21) as the difference between two exponential integrals.

For a mean having a Gamma density, the general expression for p(a) as

indicated by Equation (26) is a function of ý (the average value of u) and

kj (the inverse of the normalized variance of u); it also contains as a fac-

tor a modified Bessel function of the second kind of order k2 - k. When k- I,

p(s) can be integrated in closed form to obtain the false alarm probability,

Pf, which is a function of k2 , u and the threshold level a*.

A log uniform densit7 for u when k - I results in an expression for

p(s), Equation (39), which is proportional to the difference between two ex-

ponentials and inversely proportional to a. The exponentials are functions

of th* upper and lower limits of u.

When the mean has a log normal density the integral expression for p (a)

is difficult to evaluate in closed form. Some results which are stated with-

out proof in (1] were used to obtain an expression for p(s), Equation (45),

which is a complicated function of k, u (the median value of u) and a 2

(the variance of lnu).

For the case where the conditional density pl(a/u) is exponential, the

geneca. behavior of p(s) for all of the assumed functional forms of p1,(u)

give similar results. When the spread in the mean is small, the density for
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p(a) is approximately equal to pl(9/u) evaluated at u u. As the spread in

u becomes large, the function u p(e) becomes highly concentrated at e = 0.

Preliminary visual inspection of a limited amount of experimental data

on the backscatter from trees seems to indicate that the density for the

mean clutter power, P2 (U), can be approximated by log uniform or truncated

log normal densities. In order to obtain reliable estimates of P2 (u), his-

tograms of experimental data on the average backscatter for the terrains of

interest at the desired frequencies, depression angles, polarizations, etc.

are required.
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V. FUTURE WORK

Future efforts on the characterization of nonstationary clutter should

include theoretical and experimental investigations. Several analytical

problems are suggestcd based on the cifort to date. First of all the re-

sults given i4 this report for a mean which is log normally distributed are

based on an equation in a technical paper that is stated without proof.

Since clutter ý;ith log normal mean has been measured experimentally, an ad-

ditional effort should be made to obtain a rigorous derivation. Another ap-

propriate theoretical topic would be to perform an. analysis for che parame-

ter k in the Nakagami density function similar to that reported here for

the parameter u. The approach would be to assume various standard densities

for P2 (k) and integrate the expression p1 (a/k)P2 (k) to obtain the probabil-

ity density function for the instantaneous clutter power p(a). Other theo-

retical topics would be suggested from the analysi! of experimental data.

For example, if the data indicate that the assumed models for pl(e/u) and

P2(u) are inadequate, then additional derivations similar to those reported

here would be required.

In the area of experimental data analysis the task would include the

generation of histograms to determine for various terrains the conditional

density and the densities for the mean and normalized variance. The best

fit of a.Nakagami density to the measured conditional density would be made

to determine the adequacy of the present model of p 1 (a/u,k). If tthe Naka'-

gami density is found to be valid, then temporal or spatial histograms of

the data would be compared to p(a) as predicted through the use of p,(a/u,k)

and P2 (u,k) to determine the validity of the overall model.

35



REFERENCES

I. M. Nakagami, "The m Distribution - A General Formula of Intensity Dis-
tribution of Rapid Fading," in Statistical Methods in Radio Propagation,
W. C. Hoffman (Ed.), Pergamon Press, 1960.

2. R. R. Boothe, "The Weibull Distribution Applied to the Ground Clutter
Backscatter Coefficient," U.S. Army Missile Command, Redstone Arsenal,
Report RE-TR-69-15, June 1969.

3. F. E. Nathanson, Radar Design Principles, McGraw-Hill, Inc., 1969, p.266.

37

S..... A,• •



MISSION
o f

Paine Air Developyment Center
RAOC picui caid exe=cw-'e te eaitch, deve2Joprent~, tu, atnd
seb cted ac~qu4sLt~on ptog/wam~ z in-uppo'tt o4 Commaznd, Con~twY.
C Co rfA um'crztion,6 and InteW-gence (C31) aciiis Technicai
cz nd engince/tng -6uppo/tLt wz-hin awteaz o4 techni.caf c~ompe&tece

iz ,vovid'ed -fto ESV PLo~g/Amn 06jcu~ (PO.6) a~nd othetr ESV
eteen~ts. The pinc~ipai techni~cat rniz6ion a,%ea.6 a~te
Commtaicatonz, eeectoma~gnetc guida~nce atnd contAtoZ, .6uA-
vei,,-ance o6 wtound antd aAo.6pac.e objec~tz, iZn.teZC.gence da.ta.
coZeec~tiok and kctndLing, iZ~a/~noma.tion 4yqtem -technotogq,
ionodpheAuýc p'topa~ga~tion, 6o~d ~state .6cienciez, mic&Jtowve
phsi. and etec~t'onic /teLizbitid, maina a~ubiWti andl
compcatibZJttj.


